ACTIVE AREA

Photosensitive surface

CATHODE TERMINAL MARK

R 0.25

NOTES:

ф 0.5

All dimension are in millimeters.

Large Active Area Silicon Photodiode OSD150-IC

Description

The OSD150-IC is high-output, high sensitivity silicon Photodiode mounted in ceramic with glass package, Permits wide angular response.

Features

- * High sensitivity, high speed response
- * Wide angular response
- * High reliability in demanding environments
- * Operating temperature is from -40 to +80 $^{\circ}$ C
- * Storage temperature is from -40 to +100 $^{\circ}\mathrm{C}$
- * soldering temperature is 260°C @Max.5 seconds at the position of 2mm from the PIN legs.

General Ratings

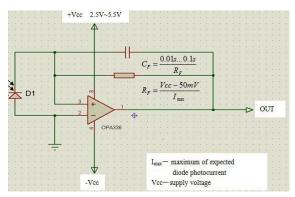
Applications

* IR/ Laser light Monitoring

Information in this technical datasheet is believed to be correct and reliable. However, no responsibility is assumed for possible inaccuracies or omission. Specifications are subject change without notice

OTRON ELE CTRONIC TECHNOLOGY CO.LTD

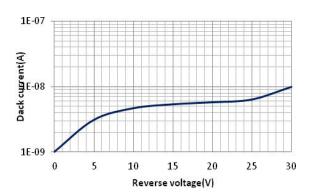
TEL:+86-21-54971821 FAX:+86-21-54971823


Absolute Maximum Ratings (Ta=25°C)

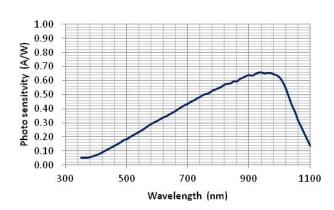
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Short circuit Current	I _{sc}	Ev=100lx fc=2856k*		134		μΑ
Isc Temperature Coefficient	TC Isc	2856k		1.2		%/°C
Open Circuit Voltage	Voc	Ev=100lx fc=2856k*		347		mV
Voc Temperature Coefficient	TC Voc	2856k		-2.2		mV/℃
Dark current	I _D	VR=10mV		1		nA
		VR=10V		5		
Rise time		V_R =0V; λ =635nm; R_L =50 Ω , f=1KHz	580			ns
	t _R	V_R =0V; λ =635nm; R_L =50 Ω , f=1KHz	480			ns
Temp coefficient of I _D	T _{CID}			0.18		times/℃
Reverse breakdown voltage	V _{(BR)R}	I _R =100μA Ev=0lx	50			V
Junction Capacitance	C,	V _R =0V f=1MHz		128		pF
		V _R =10V f=1MHz		25		
Photo sensitivity	S _R	650nm		0.37		A/W
		940nm		0.66		
Spectral Application Range	λ_{range}		400		1100	nm
Spectral Response-Peak	λρ			940		nm
Shunt resistance	Rsh	VR=10mV		0.01		GΩ
Rsh Temperature Coefficient	TC Rsh			0.18		%/°C
Angular Resp 50% Resp Pt	θ _{1/2}			±60		Degrees
Noise Equivalent Power	NEP	V _R =10V λ=940nm		6.25×10 ⁻¹⁴		W/Hz ^{1/2}
Specific Detectivity	D*	V _R =10V λ=940nm		1.6×10 ¹³		cm(Hz/W) ^{1/2}

^{*} Ev: Illuminance by CIE standard light source A (tungsten lamp)

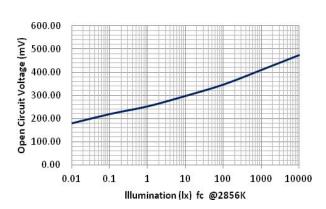
■ Typical application circuit



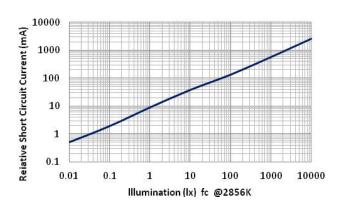
Information in this technical datasheet is believed to be correct and reliable. However, no responsibility is assumed for possible inaccuracies or omission. Specifications are subject change without notice



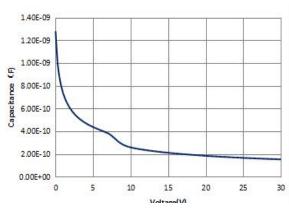
■Dark current vs. reverse voltage



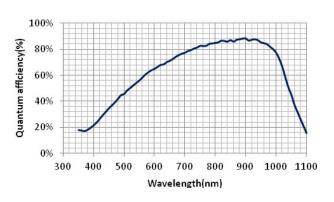
■ Spectral response


■Open circuit Voltage

Vs. Illumination


■Relative Short Circuit

Current vs. Illumination



■Relative Junction Capacitance

VS. Voltage

■Quantum efficiency

Information in this technical datasheet is believed to be correct and reliable. However, no responsibility is assumed for possible inaccuracies or omission. Specifications are subject change without notice