

Selective wavelength photodiode:blue

Description

The OSD9-BM is device as blue light, narrow wavelength. Optical filter is applied photo diode in COB package, It can get fast response output of high-sensitivity, This Device is ideal for applications such as colorimeters, display color correction, and selectively ambient light detection or rejection.

Features

- * color filter in blue chip
- *high sensitivity
- * no optical filter used
- * Low dark current
- * Operating temperature is from -40 to +80 $^{\circ}$ C
- * Storage temperature is from -40 to +100 $^{\circ}\mathrm{C}$
- * soldering temperature is 260 $^{\circ}$ C @Max.5 seconds at the position of 2mm from the PIN leg.

General Ratings

- * peak wavelength: 440nm
- * Chip active area: 9mm²

NOTES:

All dimension are in millimeters.

- * spectrum bandwidth 80nm
- * High linearity

Applications

- *color identification
- *white balance adjustment
- *light source color temperature detection

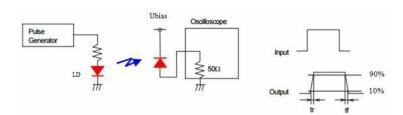
Information in this technical datasheet is believed to be correct and reliable. However, no responsibility is assumed for possible inaccuracies or omission. Specifications are subject change without notice

OTRON ELECTRONIC TECHNOLOGY CO., LTD

TEL:+86-21-54971821 FAX:+86-21-54971823

Absolute Maximum Ratings (Ta=25°C)

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Dark current	I _D	V _R =10mV		20		рА
		V _R =10V		260		
Rise time	t _R	$V_R=5V;\lambda=850$ nm; $R_L=50\Omega$		0.1	1	μs
Tempcoeffi-cient of I _D	T _{CID}			0.18		times/℃
Reverse breakdown voltage	V _{(BR)R}	I _R =100μA Ev=0lx		35		V
Junction Capacitance	C _J	V _R =0V f=1MHz		99		pF
Photo sensitivity	S _R	440nm		0.19		A/W
Spectral Application Range	λ_{range}		400		540	nm
Spectral Response-Peak	λ_p			440		nm
Rsh Temperature Coefficient	TC Rsh			0.18		%/℃
Angular Resp 50% Resp Pt	θ _{1/2}			±55		Degrees
Noise Equivalent n Power	NEP	V _R =10V λ=900nm		4.80×10 ⁻¹⁴		W/Hz ^{1/2}
Specific Detectivity	D*	V _R =10V λ=900nm		4.17×10 ¹²		cm(Hz/W) ^{1/2}

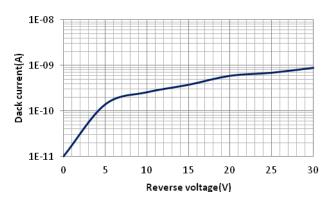

^{*} Ev: Illuminance by CIE standard light source A (tungsten lamp)

■ Typical application circuit

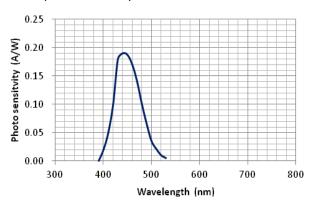
+Vcc 2.5V~5.5V $C_F = \frac{0.01s...0.1s}{R_F}$ $R_F = \frac{Vcc - 50mV}{I_{\text{max}}}$ OPA338 OUT

supply voltage

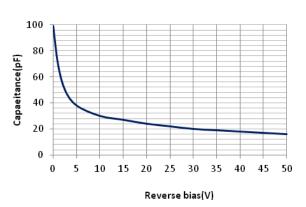
** Response time measurement circuit:



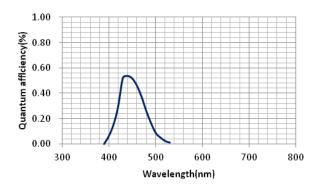
Information in this technical datasheet is believed to be correct and reliable. However, no responsibility is assumed for possible inaccuracies or omission. Specifications are subject change without notice



■ Dark current vs. reverse voltage



■ Spectral response



■ Relative Junction Capacitance

VS. Voltage

■Quantum efficiency

Information in this technical datasheet is believed to be correct and reliable. However, no responsibility is assumed for possible inaccuracies or omission.

Specifications are subject change without notice